

Beam Dynamics Simulations for PITZ-1.8

M.Krasilnikov, PPS, 16.02.2009

PITZ-1.8 Setup

Gun-4.2

Sakhorn Rimjaem, "Tuning of Gun 4.1 and 4.2", PITZ Physics Seminar, April 3, 2007

Measurement results of *π*-mode for each tuning steps

iteration	f _{air} (GHz)	flatness	T _{op} (°C)	tuning method
before	1.300864	1.09	79	-
step1	1.300383	1.25	57	push full-cell
step2	1.300373	1.29	56	push half-cell
step3	1.300326	1.23	54	push half-cell
step4	1.300279	1.22	52	push half-cell
step5	1.300186	1.17	48	push half-cell
step6	1.300295	1.13	53	pull full-cell
step7	1.300465	1.08	60	pull full-cell

After Tuning

room temperature	21.5 ℃
f ₀ (π-mode)	1.300465 GHz
Δf (no cathode – cathode) for π -mode	280 kHz
Flatness for π -mode	1.08
Operating temperature for 1.3 GHz	60°C

On-axis field distribution in the gun cavity after tuning completed. After the tuning, the field in cathode cell is 8% higher than that is the full cell.

Gun 4.1 (for π - mode):

- f_o after tuning = 1.300465 GHz
- Operating temperature = 60°C (preferable temp.=55°C)
 - → still in tolerance of the cooling system limit
 - → Gun4 has improved cooling channel design from Gun3
 - \rightarrow higher T_{op} may be suitable with Gun4
 - since it will be operated with higher power + longer pulses
- Field flatness = 1.08

Gun-4.2: field profile simulations

Gun-4.1 simulation of measured field profile

Gun-4.1: Le = length of the coupler

Gun-4.1: Le = length of the coupler

Courtesy M.Dohlus "Some methods to calculate RFcoupler fields in accelerating cavities", KWT2008

$$A(\omega) = \frac{W_{tot}(\omega)}{\left|a(\omega)\right|^2}$$

$$A(\omega) = \max \to \omega_R$$

Gun-4.1: summary

- Non-perturbed geometry \rightarrow df=+2.6MHz (too much!)
- By simulation of the tuning procedure (p1,p2,d1,d2) it was not possible to simulate *simultaneously* frequency + field profile
- Only involving (R1,R2) helps to fit the measurements
- ? Once more check the geometry?
- ? Geometry deformation during welding?
- ...

PITZ-1.8 simulations using different gun field profiles

penscal

1

CDS-booster: Ez field on the z-axis

Field distribution for 1/2-cell (+end cells) provided by V.Paramonov

File: **CDS14_15mm.txt** = 14 cells for the structure with 15 mm aperture

CDS-booster: Ez field on the z-axis compared to measurements

PITZ-1.8 optimization, Q=1nC

PITZ-1.8 optimization, Q=1nC, SC mesh setup

Emittance(z=5.74m, Nrad, Nlong_in); particles in cell [inner cell; outer cell]

200kParticles

PITZ-1.8 optimization, Q=1nC, SC mesh setup $\leftarrow \rightarrow r(z)$

PITZ-1.8 optimization, Q=1nC

PITZ-1.8 optimization, Q=1nC, +booster phase optimization

PITZ-1.8 optimization, Q=1nC, +booster phase optimization

PITZ-1.8 optimization, Q=1nC, +booster phase optimization

PITZ-1.8 optimization, Q=1nC, slice parameters

PITZ-1.8 optimization, Q=1nC, slice parameters

- thermal emittance = 0.35 mm mrad \rightarrow 54% of the projected emittance
- average mismatch parameter $<\zeta>=1.1$

Emittance(z=5.74m, Nrad, Nlong_in); particles in cell [inner cell; outer cell]

Conclusions

- RF-gun cavity fields:
 - BD simulations are very sensitive for the field profile used
 - ?geometry to checked once more (follow tuning procedure)
 - ?beam based cross check (long. momentum)
- CDS booster fields: measured profile could be somehow fitted to the simulated one, but the latter (smooth!) should be used for BD simulations
- PITZ-1.8 optimization for Q=1nC:
 - min.emit~0.65mm mrad (Ek=0.55 eV + thermal emittance 54%), av. mism.par ~1.1
 - Tuning knobs: solenoid, gun phase, booster gradient, laser spot size
 - Optimum booster phase ~+20deg→only tiny emittance improvements, but probably not measurable due to the large energy spread
- PITZ-1.8 optimization for Q=0.1nC:
 - min.emit~0.17mm mrad (Ek=0.55 eV) thermal emittance 52%), av. mism.par ~1.2-1.3
 - Tuning knobs: solenoid, gun phase, booster gradient, laser spot size
 - Double min in emittance dependence vs laser spot size → rather high mism. Parameter, further improvements might require setup optimization (booster and solenoid position, laser temporal length?)
- Space charge routine parameter control!