

Simulations for low charge beams at PITZ

Martin Khojoyan

PITZ Physics Seminar

Zeuthen, 16.02.2010

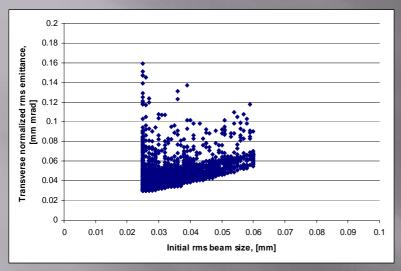
Content

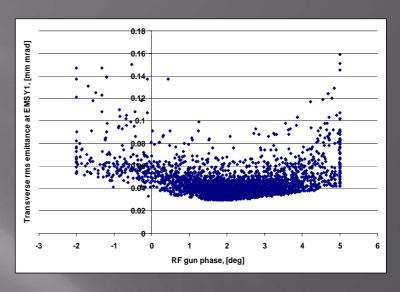
- PITZ1.7 setup:
- Simulations for 10pC bunch charge@long flattop
- Measurement results and simulations for low bunch charge@short Gaussian

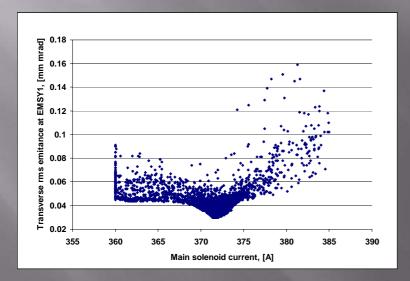
PHOTO Injector Test Facility

PITZ Description of the 'optimization' process

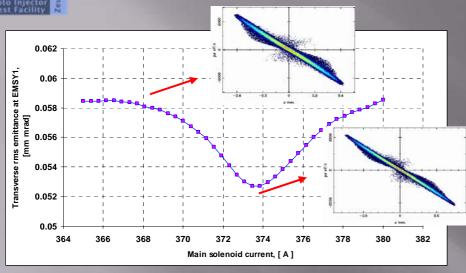
During the optimization process the following parameters were constant:

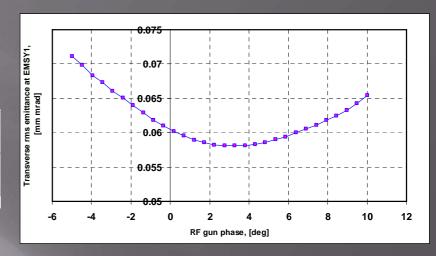

- bunch charge (10pC),
- temporal laser flat-top distribution (20ps FWHM) and rise/fall time (2ps),
- \blacksquare thermal kinetic energy in the cathode (0.55eV),
- gun gradient (60MV/m).
- the reference screen is EMSY1 (5.74m downstream from the cathode).
- □ Solenoid calibration: B(T)=B1*I(A)+B2, where B1=0.00058838, B2=0.000004084

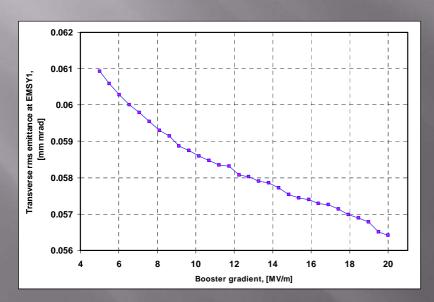

Five parameters were variable:

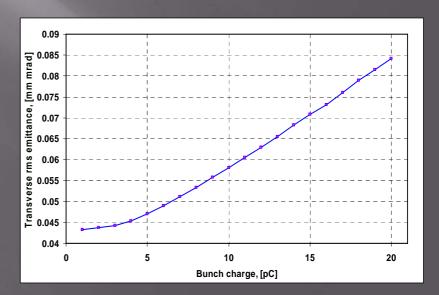

- RF gun ([-2:5]deg) and booster ([-2:2]deg) phases,
- booster gradient ([2:10]MV/m),
- □ Initial rms beam size ([0.025:0.06]mm) and main solenoid current ([360:385]A).

Optimization was done with 50kp

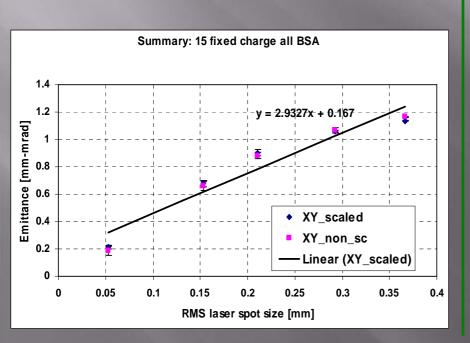

- 1. For 10pC charge one should go
 To a smaller BSA's about 0.1mm but current min
 available BSA is 0.2mm
- 2. Min emittance at about [1-3]deg gun phase
- 3. Small emittance values at Imain-[368-374]A

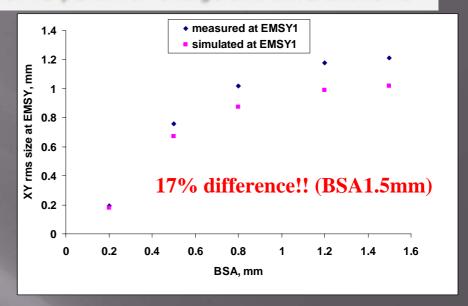


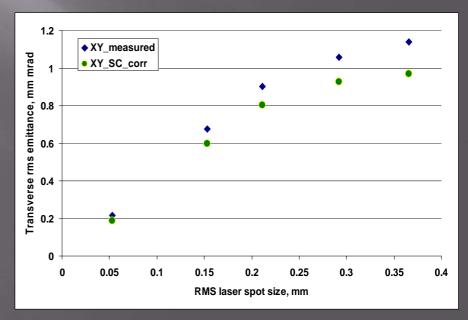

Bunch charge, temporal laser flat-top distribution: FWHM, rise/fall time Thermal kinetic energy	RF gun phase (from max mom. gain) [deg]	Booster phase (from max mom. gain) [deg]	Main solenoid current [A]	Initial rms beam size [mm]	Booster gradient [MV/m]
10pC 20ps, 2ps 0.55eV	3.008	-0.096	368.263	0.05	10
Trans. rms emitttance, [mm mrad] EMSY1	Transverse rms beam size, [mm] EMSY1	Rms energy spread, [keV] EMSY1	Average kinetic energy, [MeV] EMSY1	Long. beam size, [mm] EMSY1	Long. emittance, [pi keV mm] EMSY1
0.056994	0.1042	14.47	11.77 Pz~12MeV/c	1.379	16.66



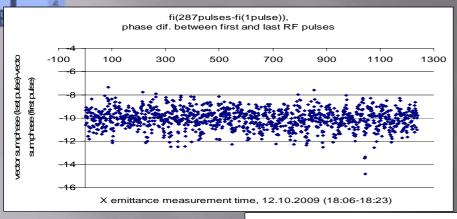
Emittance as a function of different machine parameters

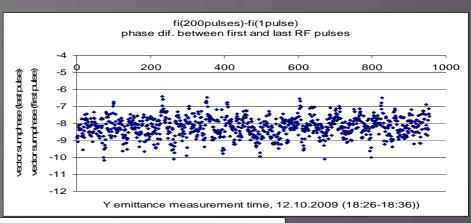


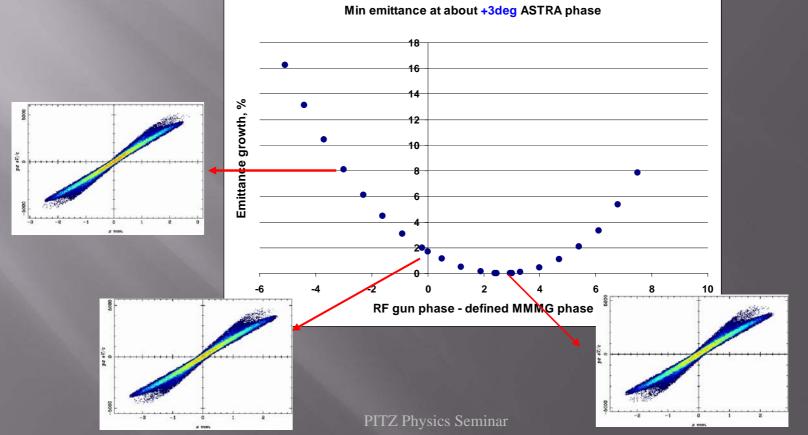




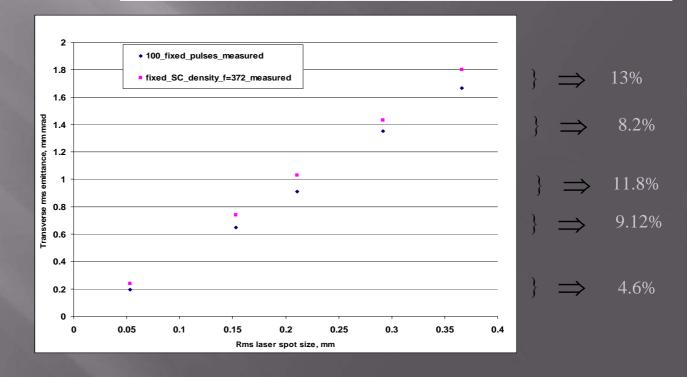
Measurement and simulation results for 15 pC bunch charge and different BSA's


BSA,mm	Number of pulses used for hor. emittance measurements	Number of pulses used for vert. emittance measurements
0.2 (10pC)	7	7
0.5	75	87
0.8	125	155
1.2	175	200
1.5	287	200





PITZ



$$f_{SC} = \frac{Q(pC)}{FWHM \cdot (XY_{laser})^2} = \frac{1000}{20 \cdot (0.366)^2} \sim 373$$

BSA, mm	Bunch charge, pC Fixed 100 pulses (f~222)
0.2	1.4
0.5	11.8
0.8	20
1.2	36
1.5	47

	Charge density at cathode, pC/mm^2	BSA1.5 mm Q, pC	BSA1.2 mm Q, pC	BSA0.8 mm Q, pC	BSA0.5mm Q, pC	BSA0.2mm Q, pC
3	372	50	32	17	9.7	1.05
	Number of RF pulses used for the measurement X/Y	100/110	125/150	125/155	110/115	51/78

Summary and outlook

- It seems that for low charge (~10pC) optimal ASTRA phase is +3 deg for the injector optimized at 1nC charge (+6 deg in that case) but one has to go to detailed investigations (bigger BSA's, RF studies ...)
- For the case of short Gaussian (more pronounced space charge...) profile the charge density factor has to be carefully set for low charge measurements
- Continue RF investigations...
- Do 'optimization' for PITZ1.8 setup (CDS booster)

Thank you for your attention!