More precise method for the gun stability measurements (proposals)

M.Krasilnikov PPS, 09.02.2010

Gun3.2: Phase Scan and Charge Stability (MK, PPS, 04.12.2007)

Phase, deg	<q>, nC</q>	dQ/ <q>,%</q>
-29	0.547	3.6%
0	1.005	2.1%
41	1.237	1.8%
51	0.937	4.9%

Charge stability studies: laser energy and rf phase jitter

 δQ – charge jitter

 $\delta Q^2 \approx \delta Q_F^2 + \delta Q_{RF}^2$

 δQ_E – charge jitter due to laser energy jitter

 $\delta Q_{\rm RF}$ – charge jitter due to rf phase jitter

Charge stability studies: laser energy and rf phase jitter

?laser energy jitter 1.8%???

Charge stability studies: laser energy and rf phase jitter

Phase, deg	<q>, nC</q>	dQ/dphi nC/deg	DQ(21%) nC	dE/E %	dQ_E	dQ/ <q>,%</q>	dQ, nC	dQ_phi	dphi,deg
-29	0.547	0.019	0.01	2.93%	0.001	3.6%	0.020	0.020	1.03
0	1.005	0.012	0.123	2.93%	0.017	2.1%	0.021	0.012	, 1.02
41	1.237	0.0001	0.160	2.93%	0.022	1.8%	0.022	0.000	/ 1.16
51	0.937	-0.08	0.15	2.93%	0.021	4.9%	0.046	0.041	/ 0.51*

laser energy jitter
$$\frac{\delta E}{E} \sim 2.9\%$$

RF phase jitter $\delta \varphi \sim 1 \deg$

Charge vs. laser energy

Simulated (ASTRA) phase (Schottky) scan

Q_SCHOTTKY=0.005

2D (phase + laser energy) jitter

8

2D (phase + laser energy) jitter

phi0=-10; sigphi=5; E0=1.0; sigE=0.05;

1

1.1

1.3

1.4

1.2

9

Simultaneous rf gun phase and laser energy jitter determination

•Detailed measurements: Q(SPPhase, LasAtten) x n

•Q-histogram for the centre point

•Fit 2D Gaussian jitter distribution x measured surfaces to the measured Q-histograms:

$$\Phi(\sigma_{\phi}, \sigma_{E}) = \sum_{n} w_{n} \cdot \int (QH_{meas} - QH_{calc}) dq \to \min$$

Simultaneous rf gun phase and laser energy jitter determination

Main assumptions:

•normal distribution of rf gun phase and laser energy jitter

•rf gun phase and laser energy jitter are independent

•no other source of the charge jitter:

Dark current (bkg) fluctuations

Dependence of the bunch charge on the gun gradient?

Noise of the ICT (FC?) measurements

Charge losses due to beam position (steering)

++:

•Rather simple measurements (LOW.ICT1 or LOW.FC1)

•...

•Provides simultaneously phase and laser rms jitter

--:

•Could be time consuming (needs some automation)

•Reconstruction algorithm to be implemented and tested

2D phase scan (ASTRA simulations)

