Considerations of off-set screens

 for DISP3.Scr1 Screen Station in HEDA2

Tunnel Wall

DISP3.Scr1 Assembly

Aerogel screen on the beam axis

Actuator @ empty position

- all screen are placed at theoretical position (650mm after the DISP3.D1)
- optical system
- 2 TV readouts: for 45mm off-set between YAG and OTR
- 2 Streak readouts: for 45 mm off-set between Aerogel and OTR
- bigger size of bellow is needed (DN160 \rightarrow DN200)
- for DN200 bellow, effort force > 3000N is needed
- AXMO linear actuator can handle $\sim 3000 \mathrm{~N}$ effort force
- larger whole screen station, bigger view-ports, larger vacuum volume (more pumping efficient)

screen configurations: off-set between YAG and OTR screen (for RFD measurements)

D1 to Scr1 distance (mm)	$\begin{gathered} \text { Q1 } \\ \text { (T/m) } \end{gathered}$	<p> MeV/c		$\mathrm{p}_{\mathrm{rms}}(\mathrm{keV} / \mathrm{c})$		$\mathrm{P}_{\mathrm{rms}, \text { slce, min }}(\mathrm{keV} / \mathrm{c})$		$\mathrm{P}_{\mathrm{rms}, \text { slce, mean }}(\mathrm{keV} / \mathrm{c})$	
		original	$\Delta<p>1<p\rangle$	original	$\Delta p_{\text {rms }} / p_{\text {rms }}$	original	DISP3.Scr1	original	ref. Δ (\%)
605	-1.97	32.07279	2.68×10^{-7}	106.142	-2.01×10^{-5}	0.759	0.811 (rel $\Delta=6.9 \%$)	2.873	63.1
610	-1.97	32.07279	2.8×10^{-7}	106.142	-1.32×10^{-5}	0.759	0.777 (rel $\Delta=2.4 \%$)	2.872	53.0
650	-1.91	32.07284	6.1×10^{-8}	106.151	-1.90×10^{-5}	0.774	0.964 (rel $\Delta=24.5 \%$)	2.881	28.4
690	-1.87	32.07289	-3.9×10^{-8}	106.155	-5.69×10^{-6}	0.793	1.067 (rel $\Delta=34.5 \%$)	2.893	21.3
695	-1.86	32.07291	-1.0×10^{-7}	106.156	-2.33×10^{-6}	0.799	1.079 (rel $\Delta=35 \%$)	2.898	19.3

Slice momentum spread distribution at the positions 610, 650, and 690 mm after the DISP3.D1 dipole magnet
(blue \rightarrow @PST.Scr5, red \rightarrow @considered position after DISP3.D1)

No. of slice $=112$, slice width ~ 90 um
helmholtz
GEMEINSCHAFT

Transwerse distribution

RFD turn-on \longrightarrow

Longitudinal distribution at DISP3.Scr1 (red) compared to distribution at PST.Scrs (blue)

Transverse distribution

Longitudinal distribution at DISP3.Scr1 (red) compared to distribution at PST.Scr5 (blue)

Transverse distribution

pto injector

RFD turn-on \longrightarrow

Longitudinal distribution at DISP3.Scr1 (red) compared to distribution at PST.Scr5 (blue)

- Off-set of 45 mm configuration is preferable for screen station technical design from LAL
- YAG or OTR has off-set of 45 mm
- Aerogel screen has off-set of 45mm from theoretical position (@650mm)
- radiation light exits view-port on the same axis for YAG/OTR and for Aerogel/OTR
- only 1 TV and 1 streak readout
- view-ports of 100 mm diameter can be used
- can stay with bellow DN160
- effort force for actuator linear table <3000N
- AXMO linear actuator can handle $\sim 3000 \mathrm{~N}$ effort force
- Symmetry of screen holder is reserved

If we place YAG @ 650mm and OTR @ 695mm
$\quad \Rightarrow$ good resolution for $\mathrm{p}_{\text {rms,slice,mean, }}$, but worse $\mathrm{p}_{\text {rms,slice,min }}$

- Symmetry of screen holder is not reserved

