



1

# **Status of HEDA2 Design**

## S. Rimjaem

October 21, 2008



## Introduction



### Tasks:

- 1. Measurements of momentum and momentum distribution for electron momentum up to 40 MeV/c
- 2. Longitudinal phase space measurements for momentum spread resolution ~1 keV/c by using combination of:
  - a dipole magnet, an RF-deflector and a beam monitor screen
  - a dipole magnet and a Cherenkov radiation equipped with a streak camera readout system
- 3. Transverse slice emittance measurements at off-crest booster phases

### **Priority**:

The off-crest booster operation for the transverse slice emittance measurements leads to the large momentum spread and therefore momentum spread resolution. Since the resolution of the transverse slice emittance measurement at HEDA1 is very small, the design of HEDA2 devotes to the resolution of the resolution of the resolution of the momentum spread measurement.

#### **Requirements:**

- The maximum electron momentum up to 40 MeV/c (30 MeV/c nominal)
- The dipole deflects the beam in horizontal direction since the RF-deflector deflects the beam vertically
- The possibility to be operated with full pulse length of the trains up to 7200 pulses, 1 nC and 10 Hz repetition rate

 $\Rightarrow$  A huge beam dump ~ 2m × 2m ×2m is needed, but the space is limited. Therefore, the beam is planned to be transported to the beam dump of the main beam line with reasonable transverse beam size.





## The first dipole magnet (D1)

- The dipole deflects the beam of nominal momentum of about 30 MeV/c in horizontal direction since the RF-deflector deflects the beam vertically.
- The momentum spread measurement at the screen after the dipole magnet has the momentum resolution as small as 1 keV/c



## **Transportation Matrices (1)**



### **Dipole magnet and drift lengths**



**M** is the transport matrix of the beam line elements

|            | $\int R_{11}$ | $R_{12}$ | 0        | 0        | 0        | R <sub>16</sub> ] |
|------------|---------------|----------|----------|----------|----------|-------------------|
|            | $R_{21}$      | $R_{22}$ | 0        | 0        | 0        | $R_{26}$          |
| м _        | 0             | 0        | $R_{33}$ | $R_{34}$ | 0        | 0                 |
| <i>w</i> – | 0             | 0        | $R_{43}$ | $R_{44}$ | 0        | 0                 |
|            | $R_{51}$      | $R_{52}$ | 0        | 0        | $R_{55}$ | $R_{56}$          |
|            | LΟ            | 0        | 0        | 0        | 0        | $R_{66}$          |

A particle state at any position along the beam transport line can be described by a matrix transformation from its relative coordinates as

$$\begin{bmatrix} x \\ x' \\ y \\ y' \\ z \\ \delta \end{bmatrix} = M \begin{bmatrix} x_0 \\ x'_0 \\ y_0 \\ y'_0 \\ z_0 \\ \delta_0 \end{bmatrix} = \begin{bmatrix} R_{11}x_0 + R_{12}x'_0 + R_{16}\delta_0 \\ R_{21}x_0 + R_{22}x'_0 + R_{26}\delta_0 \\ R_{33}y_0 + R_{34}y'_0 \\ R_{43}y_0 + R_{44}y'_0 \\ R_{51}x_0 + R_{52}x'_0 + R_{55}z_0 + R_{56}\delta_0 \\ R_{66}\delta_0 & \text{excluded } R_{56}\delta_0 \\ \text{in simulation} \end{bmatrix}$$

Transportation matrix for the dipole and its wedge edges

$$M_{dipole} = M_{\beta_{out}} M_{sector} M_{\beta_{in}},$$

Transportation matrix for a particle travels from the reference screen (PST.Scr5) through the first dipole (D1) and reaches the dispersive screen (DISP3.Scr1)

$$M = M_{L_{out}} M_{\beta_{out}} M_{D1} M_{\beta_{in}} M_{L_{in}}$$

$$M_{drift} = \begin{bmatrix} 1 & L & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & L & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \frac{L}{\gamma^2} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} M_{sector} = \begin{bmatrix} \cos \alpha & \rho \sin \alpha & 0 & 0 & 0 & \rho(1 - \cos \alpha) \\ -\frac{\sin \alpha}{\rho} & \cos \alpha & 0 & 0 & 0 & \sin \alpha \\ 0 & 0 & 1 & \rho \alpha & 0 & 0 \\ 0 & 0 & 1 & \rho \alpha & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \sin \alpha & \rho(1 - \cos \alpha) & 0 & 0 & 1 & \frac{\rho \alpha}{\gamma^2} - \rho(\alpha - \sin \alpha) \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} M_{\beta} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{\tan \beta}{\rho} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

October 21, 2008



## **Transportation Matrices (2)**



### Streak & RF-deflector measurement

#### Transport matrix of streak camera TOF measurement

$$M_S = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & s \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

where s is the resolution of the streak TOF measurement

Matrix transportation including the streak camera TOF measurement

 $M = M_S M_{Lout} M_{\beta_{out}} M_{D1} M_{\beta_{in}} M_{L_{in}}.$ 

#### The final particle coordinates becomes

$$\begin{array}{rcl} x &=& R_{11}x_0 + R_{12}x_0' + R_{16}\delta_0 \\ x' &=& R_{21}x_0 + R_{22}x_0' + R_{26}\delta_0 \\ y &=& R_{33}y_0 + R_{34}y_0' \\ &=& y_0 + (L_{in} + L_{out} + \rho\alpha)y_0' \\ y' &=& R_{43}y_0 + R_{44}y_0' \\ &=& y_0' \\ z &=& R_{51}x_0 + R_{52}x_0' + R_{55}z_0 + (R_{56} + sR_{66})\delta_0 \\ &=& R_{51}x_0 + R_{52}x_0' + z_0 + (R_{56} + s)\delta_0 \\ \delta &=& R_{66}\delta_0 \\ &=& \delta_0 \end{array}$$

Transport matrix of measurement with RF-deflector

$$M_{RFD} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & k & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & k & 0 & 0 & 1 \end{bmatrix}$$

where k is the RF-deflecting factor

 $k \equiv \frac{eV_0}{aE}$ 

Matrix transportation including the RF-deflector measurement

$$M = M_{L_{out}} M_{\beta_{out}} M_{D1} M_{\beta_{in}} M_{L_{in}} M_{RFD},$$

#### The final particle coordinates becomes

$$\begin{aligned} x &= R_{11}x_0 + R_{12}x'_0 + R_{16}\delta_0 \\ x' &= R_{21}x_0 + R_{22}x'_0 + R_{26}\delta_0 \\ y &= R_{33}y_0 + R_{34}y'_0 + R_{34}kz_0 \\ &= y_0 + (L_{in} + L_{out} + \rho\alpha)y'_0 + kz_0 \\ y' &= R_{44}y'_0 + R_{44}kz_0 \\ &= y'_0 + kz_0 \\ z &= R_{51}x_0 + R_{52}x'_0 + kR_{56}y_0 + R_{55}z_0 + R_{56}\delta_0 \\ &= R_{51}x_0 + R_{52}x'_0 + kR_{56}y_0 + z_0 + R_{56}\delta_0 \\ \delta &= R_{66}\delta_0 \\ &= \delta_0 \end{aligned}$$

#### Note: Consider the deflection in horizontal plane, non-deflection in vertical plane and excluded $R_{56}\delta_0$ in simulation

October 21, 2008



While electron beam is deflected by the a dipole magnet, particles with different electron momenta are deflected with different deflecting angles and result in different transverse positions at the dispersive screen. The transverse beam size (x) can be derived from

 $x = R_{11}x_0 + R_{12}x'_0 + R_{16}\delta_0$ 

In order to have good resolution of the momentum spread ( $\delta_0$ ) measurement, the influence of the other contributions  $(x_0, x'_0)$  should be as small as possible.

$$D = R_{16}\delta_0 \gg R_{11}x_0 + R_{12}x'_0,$$
  
$$\delta_0 \gg \left(\frac{R_{11}}{R_{16}}\right)x_0 + \left(\frac{R_{12}}{R_{16}}\right)x'_0.$$

Therefore, the ratios  $\left|\frac{R_{16}}{R_{11}}\right|$  and  $\left|\frac{R_{16}}{R_{12}}\right|$  should be as increased in order to increase the momentum spread resolution.

| case | $\alpha$ | $\beta_{in}$ | $\beta_{out}$ | ρ    | $L_{eff}$ | $L_{i1}$ | $L_{o1}$ | $D(L_{o1} + L_{i2})$ | $R_{16}$ | $L_{D1}$ |
|------|----------|--------------|---------------|------|-----------|----------|----------|----------------------|----------|----------|
|      | (°)      | (°)          | (°)           | (mm) | (mm)      | (mm)     | (mm)     | (mm)                 | (mm)     | (mm)     |
| 60-1 | 60       | 0            | 0             | 600  | 628.32    | 1950     | 650      | 1079.42              | 862.92   | 1528.32  |
| 60-2 | 60       | 30           | -27           | 700  | 733.04    | 1550     | 861      | 1029.11              | 876.30   | 1844.04  |
| 60-3 | 60       | 30           | -30           | 750  | 785.40    | 1550     | 866      | 1019.32              | 874.98   | 1901.40  |
| 60-4 | 60       | 30           | -28           | 700  | 733.04    | 1700     | 869      | 1021.59              | 871.55   | 1852.04  |
| 60-5 | 60       | 30           | -30           | 750  | 785.40    | 1700     | 898      | 1037.80              | 893.46   | 1933.40  |
| 60-6 | 60       | 30           | -30           | 700  | 733.04    | 1950     | 843      | 981.04               | 836.71   | 1826.04  |
| 60-7 | 60       | 30           | -30           | 750  | 785.40    | 1950     | 909      | 1044.15              | 899.81   | 1944.40  |
| 60-8 | 60       | 30           | -30           | 750  | 785.40    | 900      | 909      | 1044.15              | 899.81   | 1944.40  |
| 90-1 | 90       | 0            | 0             | 650  | 1021.02   | 1700     | 250      | 1150.00              | 900.00   | 1521.02  |
| 90-2 | 90       | 30           | -30           | 700  | 1099.56   | 1550     | 452      | 996.70               | 891.04   | 1801.56  |
| 90-3 | 90       | 30           | -29           | 700  | 1099.56   | 1700     | 447      | 1010.65              | 899.22   | 796.56   |
| 90-4 | 90       | 30           | -30           | 700  | 1099.56   | 1950     | 425      | 985.29               | 879.62   | 1774.56  |
| 90-5 | 90       | 30           | -24.21        | 650  | 1099.56   | 1950     | 420      | 1018.75              | 881.16   | 1691.02  |
| 90-6 | 90       | 30           | -30           | 700  | 1099.56   | 900      | 473      | 1005.58              | 899.91   | 1822.56  |

#### Selected parameters for the first dipole magnet

October 21, 2008







#### Slice momentum spread for the particles tracing through the first dipole magnet for selected parameters

| Case | α   | $\beta_{in}$ | $\beta_{out}$ | ρ    | $L_{i1}$ | $L_{o1}$ | Q     | $\left(\frac{\delta p}{p}\right)_{mean}$ | $\left(\frac{\delta p}{p}\right)_{rms}$ | $\left(\frac{\delta p}{p}\right)_{min}^{slice}$ | $\left(\frac{\delta p}{p}\right)_{mean}^{slice}$ |
|------|-----|--------------|---------------|------|----------|----------|-------|------------------------------------------|-----------------------------------------|-------------------------------------------------|--------------------------------------------------|
|      | (°) | (°)          | (°)           | (mm) | (mm)     | (mm)     | (T/m) |                                          |                                         |                                                 |                                                  |
| 60-1 | 60  | 0            | 0             | 600  | 1950     | 650      | 1.98  | $2.4 \times 10^{-9}$                     | $-3.4 \times 10^{-6}$                   | 0.26                                            | 1.23                                             |
| 60-2 | 60  | 30           | -27           | 700  | 1550     | 861      | 2.07  | $-3.7 \times 10^{-8}$                    | $2.4 \times 10^{-4}$                    | 0.88                                            | 1.88                                             |
| 60-3 | 60  | 30           | -30           | 750  | 1550     | 866      | 2.06  | $-3.6 \times 10^{-8}$                    | $2.3 \times 10^{-4}$                    | 0.91                                            | 1.89                                             |
| 60-4 | 60  | 30           | -28           | 700  | 1700     | 869      | 2.04  | $6.7 \times 10^{-12}$                    | $-1.1 \times 10^{-8}$                   | 0.12                                            | 1.66                                             |
| 60-5 | 60  | 30           | -30           | 750  | 1700     | 898      | 2.03  | $2.1 \times 10^{-10}$                    | $-3.5 \times 10^{-7}$                   | 0.11                                            | 1.74                                             |
| 60-6 | 60  | 30           | -30           | 700  | 1950     | 843      | 1.99  | $4.0 \times 10^{-8}$                     | $1.4 \times 10^{-4}$                    | 1.64                                            | 1.71                                             |
| 60-7 | 60  | 30           | -30           | 750  | 1950     | 909      | 1.99  | $3.1 \times 10^{-8}$                     | $7.2 \times 10^{-5}$                    | 1.10                                            | 1.70                                             |
| 90-1 | 90  | 0            | 0             | 650  | 1700     | 250      | 1.97  | $9.1 \times 10^{-10}$                    | $-1.4 \times 10^{-6}$                   | 0.25                                            | 1.53                                             |
| 90-2 | 90  | 30           | -30           | 700  | 1550     | 452      | 2.06  | $1.4 \times 10^{-10}$                    | $-2.4 \times 10^{-7}$                   | 0.19                                            | 2.19                                             |
| 90-3 | 90  | 30           | -29           | 700  | 1700     | 447      | 2.06  | $-1.8 \times 10^{-10}$                   | $3.1 \times 10^{-7}$                    | 0.37                                            | 2.27                                             |
| 90-4 | 90  | 30           | -30           | 700  | 1950     | 425      | 2.04  | $-4.6 \times 10^{-10}$                   | $7.9 \times 10^{-7}$                    | 0.62                                            | 2.45                                             |
| 90-5 | 90  | 30           | -24.2         | 650  | 1950     | 420      | 1.97  | $2.4 \times 10^{-11}$                    | $-4.0 \times 10^{-8}$                   | 0.37                                            | 2.33                                             |

• Gun phase = 0, gradient = 60 MV/m

• p<sub>meam</sub> ~ 32.07 MeV/c • p<sub>rms</sub> = 106.17 keV/c

min p<sub>rms, slice</sub> = 0.826 keV/c

• mean p<sub>rms. slice</sub> = 2.371 keV/c

• Booster phase = 0, gradient = 28.55 MV/m



HELMHOLTZ

GEMEINSCHAFT



### **No Quadrupole Focusing**





| Gradient of Q1 | Gradient of Q2 | Gradient of Q3 |
|----------------|----------------|----------------|
| (T/m)          | (T/m)          | (T/m)          |
| 0              | 0              | 0              |

| Reconstruction resolution          | dipole   | dipole +RFD |
|------------------------------------|----------|-------------|
| $\delta p_{ m rms,\ slice,min}$    | 3219.8 % | 2630.5 %    |
| $\delta p_{\text{rms, slic,mean}}$ | 3265.8%  | 3393.9%     |

Simulated beam size and divergence at the reference screen (PST.Scr5), dipole D1 entrance, dispersive screen after the first dipole (DISP3.Scr1) and with RF-deflector measurement (RFD)



Simulated longitudinal particle distributions at the dispersive screen after the first dipole (top) and with RF-deflector measurement (bottom)





## **Vertical Focusing at PST.Scr5**





| Gradient of Q1 | Gradient of Q2 | Gradient of Q3 |
|----------------|----------------|----------------|
| (T/m)          | (T/m)          | (T/m)          |
| 1.9            | -3.8           | 1.9            |

| Reconstruction resolution (keV/c)  | dipole | dipole +RFD |
|------------------------------------|--------|-------------|
| $\delta p_{rms, slice,min}$        | 74.4%  | 3.0%        |
| $\delta p_{\text{rms, slic,mean}}$ | 353.6% | 154.1%      |

Simulated beam size and divergence at the reference screen (PST.Scr5), dipole D1 entrance, dispersive screen after the first dipole (DISP3.Scr1) and with RF-deflector measurement (RFD)



Simulated longitudinal particle distributions at the dispersive screen after the first dipole (top) and with RF-deflector measurement (bottom)





## **Horizontal Focusing at PST.Scr5**





| Gradient of Q1 | Gradient of Q2 | Gradient of Q3 |
|----------------|----------------|----------------|
| (T/m)          | (T/m)          | (T/m)          |
| -1.9           | 3.8            | -1.9           |

| Reconstruction resolution (keV/c)  | dipole  | dipole +RFD |
|------------------------------------|---------|-------------|
| δp <sub>rms, slice,min</sub>       | 561.2%  | 971.3%      |
| $\delta p_{\text{rms, slic,mean}}$ | 1984.0% | 1961.5%     |

Simulated beam size and divergence at the reference screen (PST.Scr5), dipole D1 entrance, dispersive screen after the first dipole (DISP3.Scr1) and with RF-deflector measurement (RFD)



Simulated longitudinal particle distributions at the dispersive screen after the first dipole (top) and with RF-deflector measurement (bottom)





## **Focusing Optimization**



Optimization of the quadrupole focusing for good resolution of momentum spread

Slice momentum spread for the particles tracing through the first dipole magnet for different quadrupole focusing without (top) and using RF-deflector (bottom)



Case 1.90, 1.98, 2.01  $\rightarrow$  Q1=Q3 & Q2=-2Q1 Case 1.94  $\rightarrow$  Q1=Q3, vary Q2 to get good resolution







#### Q1=1.98 T/m (optimum deviation in mean p<sub>rms, slice</sub>)



| Reconstruction<br>resolution       | dipole      |
|------------------------------------|-------------|
| $\delta p_{\text{rms, slice,min}}$ | 25.97%      |
| p <sub>rms, slice,min</sub>        | 1.081 keV/c |
| $\delta p_{\text{rms, slic,mean}}$ | 122.91%     |
| p <sub>rms, slice,mean</sub>       | 5.285 keV/c |

#### Q1=2.01 T/m (optimum deviation in min p<sub>rms, slice</sub>)



| Reconstruction<br>resolution       | dipole      |
|------------------------------------|-------------|
| $\delta p_{\text{rms, slice,min}}$ | 3.03%       |
| $p_{rms, slice,min}$               | 0.851 keV/c |
| $\delta p_{rms, \ slic,mean}$      | 154.14%     |
| p <sub>rms, slice,mean</sub>       | 6.026 keV/c |



resolution

 $\delta p_{\text{rms, slice,min}}$ 

P<sub>rms, slice,min</sub>

 $\delta p_{\text{rms, slic,mean}}$ 

P<sub>rms, slice,mean</sub>

## Optimized Focusing for reducing effect of dipole for the longitudinal particle distribution



#### **Conclusion**

The 60° sector dipole magnet has complex contribution from the beam size and divergence, which has to be extracted from simulations

| Gradient of Q1 | Gradient of Q2 | Gradient of Q3 |
|----------------|----------------|----------------|
| (T/m)          | (T/m)          | (T/m)          |
| 1.94           | -3.8           | 1.94           |

| Reconstruction resolution          | Dipole<br>effect | Dipole +<br>Measured | Dipole +<br>RFD |  |
|------------------------------------|------------------|----------------------|-----------------|--|
| $\delta p_{ m rms,\ slice,min}$    | 3.7%             | 1131%                | 7.5%            |  |
| p <sub>rms, slice,min</sub>        | 0.857 keV/c      | 10.168 keV/c         | 0.888 keV/c     |  |
| $\delta p_{\text{rms, slic,mean}}$ | 150.5%           | 286%                 | 152.9%          |  |
| P <sub>rms, slice,mean</sub>       | 5.940 keV/c      | 9.152                | 5.996 keV/c     |  |

Simulated beam size and divergence at the reference screen (PST.Scr5), dipole D1 entrance, dispersive screen after the first dipole (DISP3.Scr1) and with RF-deflector measurement (RFD)



#### Simulated longitudinal particle distributions at the dispersive screen after D1





### **PITZ2-OPFF Scenery: booster off-crest phases**



- Gun phase = 0, gradient = 60 MV/m
- Booster phase = 0, gradient = 28.55 MV/m
- B<sub>main</sub> = 2,156 T, B<sub>bucking</sub> = -0.0076 T (zero B-field at cathode)
- Pmeam ~ 32.07 MeV/c
- prms = 106.17 keV/c
- minimum prms, slice = 0.826 keV/c
- mean prms, slice = 2.371 keV/c

For transverse slice emittance measurements using the quadrupole scan method

YI: @ CDS booster off-crest 0f +600 the mean energy ~18.4 MeV, Erms = 1.1 MeV, dEmax-dEmin=5MeV

Therefore, the beam size = 5/18.5\*Dispersion

## **Foreseen HEDA2 setup**





| Dipole          | α<br>(degree) | ρ<br>(mm)            | β <sub>in</sub><br>(degree) | β <sub>out</sub><br>(degree) | L <sub>eff</sub><br>(mm) | Est. Width<br>(mm) | Est. Length<br>(mm) |
|-----------------|---------------|----------------------|-----------------------------|------------------------------|--------------------------|--------------------|---------------------|
| D1              | 60            | 600                  | 0                           | 0                            | 628.32                   | 600                | 693                 |
| D2              | -90           | 500                  | -7                          | 26                           | 785.4                    | 992                | 606                 |
| D3              | 60            | 400                  | -11                         | 0                            | 418.9                    | 500                | 535                 |
| Location        | DISP3.Scr1    | D2 entrance          | Quad. center                | DISP3.Scr2                   | D3 entrance              | Dump entrance      |                     |
| Position (mm)   | 650 after D1  | 456 after DISP3.Scr1 | 290 after D2                | 1243 after Quad              | 215 after DISP3.Scr2     | 388 after D4       |                     |
| Dispersion (mm) | 862.9         | 1257.8               | 351.4                       | -285.3                       | -395.4                   | 536                |                     |

Note: The width (in x-direction) of the magnets was estimated by adding about ±200 mm around the ideal trajectory.

HELMHOLTZ

| GEMEINSCHAFT





### D1:

- The dipole deflects the beam of nominal momentum of about 30 MeV/c in horizontal direction since the RFdeflector deflects the beam vertically.
- The momentum spread measurement at the screen after the dipole magnet has the momentum resolution as small as 1 keV/c

### D2:

- Lengthen the beam path for fulfil the requirements of the transverse slice emittance (Dispersion ~300 mm @ DISP3.Scr2)
- Good beam transport to the entrance of the 3<sup>rd</sup> dipole magnet

### D4:

 Transports the beam to the beam dump in the straight section with reasonable beam size (not too big nor too small)