Generation of Femtosecond Electron Pulses and Far Infrared Radiation in Thailand

Fast Neutron Research Facility (FNRF) Physics Department, Chiang Mai University (CMU) Chiang Mai, Thailand

PIZT Physics Seminar (September 26, 2006) Sakhorn Rimjaem

Outline

- Motivation, research objective and applications
- SURIYA project at Chiang Mai University
- Design of electron source and beam dynamic studies of electrons and bunch compression
- Construction and RF-measurements of thermionic RF-gun
- SURIYA components and whole system
- Electron beam production and characterizations
- Coherent FIR radiation and bunch length measurements

Motivation and Research Objective

Research Objective:

to investigate the generation of femtosecond electron bunches as a source of coherent far infrared radiation

Applications of Femtosecond Electron Bunches

Direct Application

Ultrafast Radiolysis (A. Zeweil Noble Price Winner 2002) **To study dynamic of chemical reaction by electron diffraction**

Production of femtosecond photon pulses

dynamic study at atomic scale

Intense far-infrared radiation (THz radiation) at 50-1000 μm

SURIYA

Femtosecond Electron and Photon Facility

SURIYA Beam Transport Line

6/38

Electron Source : Thermionic RF-gun

RF-port 🔍

avity

thermionic cathode

7/38

half-cell and full-cell are π excitation mode side-coupling cavity leads the whole RF-gun to $\pi/2$ excitation mode

RF Simulations of Electron Source

Overall length = 90.1 mmMaximum inner radius = 41.9 mm

SUPERFISH (LANL) was used to study
 Shape optimization
 RF-parameters
 Accelerating field distribution

Parameters for the initial design RF-gun

Parameter	HC	FC
Cavity length (mm)	32.1	58.1
Effective length (mm)	25.1	38.7

Beam Dynamic Study

PARMELA (LANL)

- Track particles through RF-fields obtained from SUPERFISH

Solve Maxwell's equations for EM field including space charge effect
Results show both longitudinal and transverse distributions

BCompress (H. Wiedemann)

- Study beam dynamics from gun exit to experimental stations

- Determine locations of experimental stations, electron bunch length, bunch charge, peak current

⁽S. Rimjaem et al., NIM A 533, 2004)

9/38

Beam Optics (H. Wiedemann)

- Simulate beam optics in the alpha magnet, linac and other components

- Used to optimize the electron beam size through the beam line

Beam Dynamic Study Results

(S. Rimjaem et al., NIM A 533, 2004) 10/38

Transverse Beam Dynamics

•

Transverse phase-space distribution at SUNSHINE RF-gun exit

- nose cone cathode
- divergence ~10 mrad
- limit bunch length ~120 fs

Transverse phase-space distribution at SURIYA RF-gun exit

- flat cathode
- bigger iris radius
- divergence ~1 mrad
- $\varepsilon_{n,rms}$ ~3.8 mm-mrad
- bunch length ~53 fs

(S. Rimjaem et al., NIM A 533, 2004)

11/38

Initial Design & Actual RF-gun Simulation Results

Parameter	Design RF-gun	Actual RF-gun
Cavity length of HC/FC (mm)	32.1 / 58.1	31.6 / 57.2
Effective length of HC/FC (mm)	25.1 / 38.7	24.9 / 39.2
f _{rf} of HC/FC (MHz)	2863.6 / 2825.0	2880.6 / 2868.8
Q ₀ of HC/FC	15263 / 13022	15692/ 13343
$\beta = v/c$ at gun exit	0.9851	0.9849
Max. kinetic energy (MeV)	2.45	2.44
Ave./max. field in HC (MV/m)	23.9 / 29.9	22.7 / 28.7
Ave./max. field in FC (MV/m)	45.0 / 67.6	46.9 / 68.5
Ave. field ratio	1.88	2.07
Max. field ratio	2.26	2.39
Cathode radius (mm)	3	3
Cathode emission current (A)	2.9	2.9
Cathode current density (A/cm ²)	10	10
Charge per bunch (pCb)	94	94
Peak current (A)	707	682
Bunch length, rms (fs)	53	55

Actual RF-gun + SURIYA beamline: bunch length = 62 fs, bunch charge = 94 pCb, peak current = 604 A

RF-gun Construction

Cavities and related components fabrication

- Oxygen Free High Conductivity copper (OFHC copper)
- CNC machining (Thai-German Institute)

RF-gun components forming

- Welding (SST components)
- High temperature brazing in free-O₂ environments (NSRRC, Taiwan)

completed RF gun 13/38

Low Power RF Measurements

RF-measurements

- Before and after the RF-gun brazing process
- Using network analyzer
- Input RF-power level = 1 dB (10 mW)
- RF-power input port \rightarrow waveguide at FC
- Output pick up port \rightarrow vacuum port at HC

Port 2 $\beta_{rf} = \frac{Q_0}{Q_{ext}}$ Port 1] 7]]]]
]

Parameter	Value
Resonant frequency HC/FC (MHz)	2854.6 / 2858.3
Resonant frequency of whole gun (MHz)	2855.3
T _{gun} for operating at 2856 MHz (°C)	27.5
Unloaded quality factor (Q_0)	12979
Loaded quality factor (Q _L)	1741
External quality factor (Q _{ext})	1568
RF-coupling coefficient	7.45
Peak field ratio	2.07

On-axis Field Profile Measurements

Slater's Perturbation

$$\frac{\Delta\omega}{\omega} = \frac{\Delta U_M - \Delta U_E}{U} = \frac{\int_{\Delta V} (\mu H^2 - \varepsilon E^2) dV}{\int_{V} (\mu H^2 + \varepsilon E^2) dV}$$

Bead-pull measurement

- 2.36 mm diameter dielectric bead

- Resonant frequency shift $\rightarrow E_z \alpha \sqrt{\Delta \omega} = \sqrt{f - f_0}$

$$\frac{E_{p2}}{E_{p1}} = 2.07$$
$$\frac{E_{ave,2}}{E_{ave,1}} = 1.85$$

15/38

(S. Rimjaem et al, EPAC2004)

Cathode Installation and Tests

Thermionic cathode

- Dispenser tungsten cathode coated with barium oxide
- Flat circular emitting surface of 3 mm radius

16/38

Cathode tests (Pyrometric measurements)

- To activate the cathode to temperature > 1050 °C
- Measure the cathode temperature by using optical Pyrometer
- Required for new cathode or when cathode experiences poor vacuum or chemical contamination

★ Operating temperature ~900-1000°C (cathode heating power ~ 13-17 W)

SURIYA Beam Transport Line

Magnetic Bunch Compressor : α-Magnet

alpha magnet poles

alpha magnet coils

completed alpha magnet

Max. Gradient = 450 G/cm Max. current= 265 A (J. Saisut, M.S. Thesis, Chiang Mai University, 2003) 18/38

alpha magnet design: code Poisson

Quadrupole and Steering Magnets

quadrupole magnet poles & coils & frame

steering coils

completed steering magnet 19/38

completed quadrupole magnet

Dipole Magnet and Charge Collector

Deflect electron beam 60° respect to beam axis

Electron beam dump & energy spectrometer

design & simulation (Radia)

completed magnet

(S. Rimjaem et al., Solid State Phenomena 107, 2005) 20/38

RF System

Electrical and RF-system

www2.slac.stanford.edu/vvc/accelerators/klystron.html

RF Gun Klystron

Linac Klystron

Beamline Installation

Beam Diagnostics

Image of electron beam with max. kinetic energy of **2.4 MeV**

Image of electron beam at the end of beamline

Image of electron beam at view screen downstream of dipole magnet

High RF-power Operation

Directional coupler Crystal Detector

RF-gun Temperature and Thermal expansion

Cavity absorption power ~ 1.46 MW

26/38

Frequency de-tuned of 362 kHz (little cavity absorption)

Beam Energy Measurements (RF-gun)

Using energy slit inside alpha magnet vacuum chamber: E_{max}=2-2.4 MeV

Beam Energy Measurements (after post linac acceleration)

Dipole magnet as electron beam dump + energy spectrometer

13 MeV electron beam (< 20 MeV)

Deflect electron beam 60° respect to beam axis

B~0.8 Tesla at current of 16 A

Actual 3D-field distribution of dipole magnet

Beam Current and Beam Power

Current Monitor

Schematic model of current transformer

Actual current transformer

$$I_b = N_s I_s = \frac{N_s}{R} V_s = \frac{8}{50} V_s = 0.16 V_s$$

Peak current of ~ 1 A at about 2 MeV from RF-gun Beam power $P_b \sim I_b \times E_{kin} = 2$ MW Cavity wall losses $P_{cy} \sim 1.46$ MW $P_{cy}+P_b = 3.46$ MW

Peak current of 0.4-0.5 A at α - magnet exit (50-60% is filtered out by the energy slit)

Maximum kinetic energy and beam pulse width as a function of cathode heating power

Beam peak current and beam pulse width as a function of cathode heating power

Electron Beam Loading in RF-gun

- Cathode operating temperature: 950-1000°C
- Filament heating power: 13-16 W
- Maximum beam peak current: 1 A
- Beam current pulse width: 1-2.5 μs
- Number of microbunches/macropulse: 3000-7000
- Maximum kinetic energy: 2-2.6 MeV

Normalized electron charge from RF-gun as a function of cathode temperature

(S. Rimjaem et al, PAC2005)

30/38

Beam Profile Measurements

Relative Intensity

3D Distribution

⁸ ¹⁰ 12

Vertical Profile

× (mm)

v (mm)

15

Contour of Profile

× (mm) Horizontal Profile

12

(in m mm) ≻ €

2 4 6 8 10

Schematic layout of beam profile measurement setup and a 2.4 MeV electron beam image (SC2)

-Phosphor screen (Gd₂O₂:Tb deposited on Al-plate)
-CCD camera
-Frame grabber broad (DT3315 Data-Translation)
-PC with DT-Acquire software

Relative intensity distribution of electron beam in 2D and 3D and the horizontal and vertical beam profiles

(MATLAB code BAP, S. Chumphongphan)

Typical operating parameters and electron beam characteristics at SURIYA

Parameter (July 4, 2006)	RF-gun	Linac
Resonant frequency (MHz)	2856	2856
Repetition rate (Hz)	10	10
Operating temperature at 2856 MHz (°C)	27.5	54
Input RF-power (MW)	3.65	~ 5.1
Expected beam energy (MeV)	2.5-3.0	20
Max. measured beam energy (MeV)	2.7	10-13
Beam peak current (mA)	1000	110
Macropulse length (µs)	~2	~1
Number of bunches per macropulse	~5700	~2856
Number of electrons per bunch	1.4×10^{9}	2.4×10^{8}

The expected bunch length (from simulation) for SURIYA system with present operating parameters is 75 fs and a total charge of 93 pCb.

32/38

Radiation from Electron Bunches

At wavelengths about or longer than the bunch length Radiation field add up coherently Electron short bunches is desired to produce coherent radiation Radiation intensity αN^2

 $I(\omega) = NI_e(\omega) + N(N-1)I_e(\omega)f(\omega)$

Bunch form factor (Fourier transform of the normalized charge distribution)

For electron beam of 10⁸-10⁹ electrons/bunch

 $\frac{1}{coherent} \approx 8 - 9$ orders incoherent

33/38

FIR Radiation from Transition Radiation

TR is generated while electron passes an interface between two dielectric material

Radiation brightness B (ph/s/mm²/100%BW) vs. wave number

dW

 $d\Omega d\omega \tilde{\pi}^2 d\omega$

Form factor for Gaussian bunch

$$f(\omega) = e^{-(\omega \sigma_z/c^2)}$$

34/38

 $e^2\beta^2\sin^2\theta$

The spectral angular distribution of TR from a vacuum-conductor interfaces (C. Settakorn, Ph.D. Thesis, Stanford University, 2001 and S. Rimjaem et al, SRI2006)

Transition Radiation Observation

Coherent Transition Radiation

Light cone

Coherent transition radiation measurement Vary electron charge by moving low energy slit scraper **Pyroelectric detector + pre-amplifier**

Coherent FIR from transition radiation

Radiation intensity αN^2

$$I_{cTR} \propto \sum_{i} N_i^2 f(\omega)$$

36/38

Bunch Length Measurements

Bunch length measurement setup

(C. Settakorn, Ph.D. Thesis, Stanford University, 2001)

Interferogram from the in-air Michelson interferometer

Bunch length measurement results for Gaussian pulse \downarrow

FWHM ~ 800 fs or σ_z ~ 240 fs

Thank you!

